Search results for "Path integral formulation"

showing 10 items of 60 documents

Functional Derivative Approach

2001

Let us now leave the path integral formalism temporarily and reformulate operatorial quantum mechanics in a way which will make it easy later on to establish the formal connection between operator and path integral formalism. Our objective is to introduce the generating functional into quantum mechanics. Naturally we want to generate transition amplitudes. The problem confronting us is how to transcribe operator quantum mechanics as expressed in Heisenberg’s equation of motion into a theory formulated solely in terms of c-numbers. This can be achieved either by Schwinger’s action principle or with the aid of a generation functional defined as follows:

AlgebraFormalism (philosophy of mathematics)Computer sciencePath integral formulationEquations of motionFunctional derivative
researchProduct

Path integral solution for non-linear system enforced by Poisson White Noise

2008

Abstract In this paper the response in terms of probability density function of non-linear systems under Poisson White Noise is considered. The problem is handled via path integral (PI) solution that may be considered as a step-by-step solution technique in terms of probability density function. First the extension of the PI to the case of Poisson White Noise is derived, then it is shown that at the limit when the time step becomes an infinitesimal quantity the Kolmogorov–Feller (K–F) equation is fully restored enforcing the validity of the approximations made in obtaining the conditional probability appearing in the Chapman Kolmogorov equation (starting point of the PI). Spectral counterpa…

Characteristic function (probability theory)Mechanical EngineeringMathematical analysisFokker-Planck equationAerospace EngineeringConditional probabilityKolmogorov-Feller eqautionOcean EngineeringStatistical and Nonlinear PhysicsProbability density functionWhite noiseCondensed Matter PhysicsPoisson distributionPath Integral Solutionsymbols.namesakeNuclear Energy and EngineeringPath integral formulationsymbolsFokker–Planck equationSettore ICAR/08 - Scienza Delle CostruzioniChapman–Kolmogorov equationCivil and Structural EngineeringMathematicsProbabilistic Engineering Mechanics
researchProduct

Nuclear quantum effects in liquid water from path-integral simulations using anab initioforce-matching approach

2014

We have applied path integral simulations, in combination with new ab initio based water potentials, to investigate nuclear quantum effects in liquid water. Because direct ab initio path integral simulations are computationally expensive, a flexible water model is parameterized by force-matching to density functional theory-based molecular dynamics simulations. The resulting effective potentials provide an inexpensive replacement for direct ab inito molecular dynamics simulations and allow efficient simulation of nuclear quantum effects. Static and dynamic properties of liquid water at ambient conditions are presented and the role of nuclear quantum effects, exchange-correlation functionals…

Chemical Physics (physics.chem-ph)PhysicsStatistical Mechanics (cond-mat.stat-mech)Liquid waterBiophysicsAb initioFOS: Physical sciencesComputational Physics (physics.comp-ph)Condensed Matter - Soft Condensed MatterCondensed Matter PhysicsMolecular dynamicsForce matchingPhysics - Chemical PhysicsQuantum mechanicsDispersion (optics)Path integral formulationWater modelSoft Condensed Matter (cond-mat.soft)Density functional theoryPhysical and Theoretical ChemistryPhysics - Computational PhysicsMolecular BiologyCondensed Matter - Statistical MechanicsMolecular Physics
researchProduct

Direct Evaluation of Path Integrals

2001

Every time τ n is assigned a point y n . We now connect the individual points with a classical path y(τ). y(τ) is not necessarily the (on-shell trajectory) extremum of the classical action. It can be any path between τ n and τn−1 specified by the classical Lagrangian \(L(y,\dot{y},t).\)

CombinatoricsPath (topology)PhysicsFree particlePhase factorsymbols.namesakePath integral formulationTrajectorysymbolsHarmonic oscillatorAction (physics)Schrödinger equation
researchProduct

Path Integral approach via Laplace’s method of integration for nonstationary response of nonlinear systems

2019

In this paper the nonstationary response of a class of nonlinear systems subject to broad-band stochastic excitations is examined. A version of the Path Integral (PI) approach is developed for determining the evolution of the response probability density function (PDF). Specifically, the PI approach, utilized for evaluating the response PDF in short time steps based on the Chapman–Kolmogorov equation, is here employed in conjunction with the Laplace’s method of integration. In this manner, an approximate analytical solution of the integral involved in this equation is obtained, thus circumventing the repetitive integrations generally required in the conventional numerical implementation of …

Computer sciencePath IntegralMonte Carlo methodMarkov processProbability density function02 engineering and technologyNonstationary response01 natural sciencessymbols.namesake0203 mechanical engineering0103 physical sciencesProbability density functionApplied mathematics010301 acousticsVan der Pol oscillatorLaplace transformMechanical EngineeringEvolutionary excitationLaplace’s methodCondensed Matter PhysicsNonlinear system020303 mechanical engineering & transportsMechanics of MaterialsLaplace's methodPath integral formulationsymbolsSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Anharmonicity deformation and curvature in supersymmetric potentials

1994

An algebraic description of the class of 1D supersymmetric shape invariant potentials is investigated in terms of the shape-invariant-potential (SIP) deformed algebra, the generators of which act both on the dynamical variable and on the parameters of the potentials. The phase space geometry associated with SIP's is studied by means of a coherent state (SIP-CS) path integral and the ray metric of the SIP-CS manifold. The anharmonicity of SIP's results in a inhomogeneous phase space manifold with one Killing vector and with a modified symplectic Kahler structure, and it induces a non constant curvature into the generalized phase space. Analogous results from the phase space geometry of someq…

Constant curvaturePhysicsKilling vector fieldPhase spaceQuantum mechanicsComputer Science::MultimediaAnharmonicityPath integral formulationGeneral Physics and AstronomyInvariant (mathematics)CurvatureSymplectic geometryMathematical physicsCzechoslovak Journal of Physics
researchProduct

Path integral quantization for massive vector bosons

2010

A parity-conserving and Lorentz-invariant effective field theory of self-interacting massive vector fields is considered. For the interaction terms with dimensionless coupling constants the canonical quantization is performed. It is shown that the self-consistency condition of this system with the second-class constraints in combination with the perturbative renormalizability leads to an SU(2) Yang-Mills theory with an additional mass term.

Coupling constantPhysicsHigh Energy Physics - TheoryNuclear and High Energy PhysicsCanonical quantizationFOS: Physical sciencesAstronomy and AstrophysicsYang–Mills existence and mass gapAtomic and Molecular Physics and OpticsRenormalizationQuantization (physics)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Path integral formulationEffective field theoryVector fieldMathematical physics
researchProduct

On new efficient algorithms for PIMC and PIMD

2002

Abstract The properties of various algorithms, estimators, and high-temperature density matrix (HTDM) decompositions relevant for path integral simulations are discussed. It is shown that Fourier accelerated path integral molecular dynamics (PIMD) completely eliminates slowing down with increasing Trotter number P . A new primitive estimator of the kinetic energy for use in PIMD simulations is found to behave less pathologically than the original virial estimator. In particular, its variance does not increase significantly with P . Two non-primitive HTDM decompositions are compared as well: one decomposition used in the Takahashi Imada algorithm and another one based on an effective propaga…

Density matrixAutocorrelationGeneral Physics and AstronomyPropagatorEstimatorGeometryVirial theoremsymbols.namesakeFourier transformHardware and ArchitecturePath integral molecular dynamicsPath integral formulationsymbolsStatistical physicsMathematicsComputer Physics Communications
researchProduct

Stochastic response determination of nonlinear oscillators with fractional derivatives elements via the Wiener path integral

2014

A novel approximate analytical technique for determining the non-stationary response probability density function (PDF) of randomly excited linear and nonlinear oscillators endowed with fractional derivatives elements is developed. Specifically, the concept of the Wiener path integral in conjunction with a variational formulation is utilized to derive an approximate closed form solution for the system response non-stationary PDF. Notably, the determination of the non-stationary response PDF is accomplished without the need to advance the solution in short time steps as it is required by the existing alternative numerical path integral solution schemes which rely on a discrete version of the…

Euler-Lagrange equationMechanical EngineeringMonte Carlo methodMathematical analysisAerospace EngineeringOcean EngineeringStatistical and Nonlinear PhysicsProbability density functionFractional derivativeCondensed Matter PhysicsFractional calculusEuler–Lagrange equationNonlinear systemNuclear Energy and EngineeringPath integral formulationNonlinear systemWiener Path IntegralStochastic dynamicFunctional integrationFractional variational problemFractional quantum mechanicsCivil and Structural EngineeringMathematicsProbabilistic Engineering Mechanics
researchProduct

Bicoherent-State Path Integral Quantization of a non-Hermitian Hamiltonian

2020

We introduce, for the first time, bicoherent-state path integration as a method for quantizing non-hermitian systems. Bicoherent-state path integrals arise as a natural generalization of ordinary coherent-state path integrals, familiar from hermitian quantum physics. We do all this by working out a concrete example, namely, computation of the propagator of a certain quasi-hermitian variant of Swanson's model, which is not invariant under conventional $PT$-transformation. The resulting propagator coincides with that of the propagator of the standard harmonic oscillator, which is isospectral with the model under consideration by virtue of a similarity transformation relating the corresponding…

High Energy Physics - TheorySwanson modelFOS: Physical sciencesGeneral Physics and AstronomyPT symmetrysymbols.namesakeFeynman diagramHarmonic oscillatorMathematical PhysicsNon-hermitian hamiltoniansMathematical physicsPhysicsQuantum PhysicsQuantization (signal processing)PropagatorMathematical Physics (math-ph)Bicoherent statesHermitian matrixIsospectralHigh Energy Physics - Theory (hep-th)Path integral quantizationPath integral formulationsymbolsPseudo-bosonsQuantum Physics (quant-ph)Hamiltonian (quantum mechanics)
researchProduct